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I. INTRODUCTION 

In previous work we investigated the response of an atom, 
in terms of its Bloch-vector components, to a phase- 
fluctuating field (PDF) [1] that was on resonance with an 
atomic transition [2,3]. In those studies we found that an 
atom's temporal response to a resonant PDF is essentially 
composed of just two components. On time scales long com- 
pared to a Rabi period, an adiabatic component manifests 
itself in the instantaneous frame of field-atom interactions as 
a figure-eight pattern of the Bloch-vector trajectory [4]. Ad- 
ditionally, there is a nonadiabatic component in the atom's 
temporal response that manifests itself as enhanced atomic 
population variations oscillating at the Rabi frequency, &>i, 
similar to the oscillations of a damped, driven harmonic os- 
cillator with its resonant frequency at tdj. These oscillations 
are a reflection of what has come to be called the "Rabi 
resonance" of an atom. While the adiabatic figure-eight 
component is only readily apparent in the instantaneous 
frame, the nonadiabatic component is principally associated 
with atomic population variations, and therefore is un- 
changed by the choice of reference frame (i.e., instantaneous, 
rotating, or laboratory frame). Consequently, the Rabi reso- 
nance is easily accessible to experimental investigation, and 
has relevance to quantum electronic devices such as atomic 
clocks, whose operation depends on atomic population varia- 
tions. 

Rabi-resonance phenomena can be observed experimen- 
tally in several ways. Cappeller and Mueller [5] first noted 
the existence of Rabi resonances in experiments with a 199Hg 
spin system, where the modulation frequency of a phase- 
modulated, resonant field was tuned through the Rabi- 
resonance condition. In their experiments, the Rabi reso- 
nance was manifested as a resonant enhancement in the 
amplitude of population oscillations occurring at twice the 
phase-modulation frequency. Our work manifests a Rabi- 
resonance phenomenon  in a very different fashion. An 
atomic system interacts with a broadband field, and as a 
consequence the atom exhibits population fluctuations char- 
acterized by a broadband of Fourier frequencies. A Rabi 
resonance in our experiments is observed as a resonant en- 
hancement of Fourier components whose frequencies are 
near the Rabi frequency. Though at a fundamental level 
these two Rabi-resonance phenomena may be intimately 
connected, representing the same intrinsic property of the 
atomic system, at the present time their exact relationship is 
unclear. 

In the work to be discussed below, we generalize our 
previous results on stochastic-field induced Rabi resonances 
by considering the temporal response of an atom to off- 
resonant stochastic fields. Examining the Fourier spectrum 
of the atomic population variations we find that the Rabi 
resonance occurs at the Rabi nutational frequency, £1 
= VA

2
 + ü>I, where A is the field-atom detuning. This result 

is consistent with the findings of Anderson et al. [6] regard- 
ing fluorescence intensity fluctuations in a PDF, though our 
studies investigate the Rabi-resonance condition in much 

greater detail. Additionally, we have examined the strength 
of the Rabi resonance as a function of detuning. As will be 
shown below, the strength of the Rabi resonance is maxi- 
mized for |A| = coj, and it is an asymmetric function of de- 
tuning. In the following section, the theory of stochastic- 
field induced Rabi resonances is generalized to off-resonant 
excitation, and then in Sees. TU and IV an experiment is 
described verifying certain key elements of the theory's pre- 
dictions. 

H. THEORY 

As the starting point for our analysis, we employ the two- 
level atom Bloch equations in the rotating frame. The equa- 
tions are the same as those used previously [2], except now 
the field detuning A is included (i.e., A = £oficU-w^J, 

dX 

Tt = -yX+AF-w1Zcos((9), 

dY 

7i ^-yY-AX-^Zsin^e), 

(la) 

(lb) 

dZ 

It' -■y(Z-Z0) + a),y sin(0) + o>xX cos(0).     (lc) 

In these expressions, the transverse and longitudinal relax- 
ation rates have been equalized (i.e., 7i = 'v2='>'. ^ would 
be appropriate in magnetic resonance experiments); Z is the 
value of the population imbalance between the two states 
(with Z0 its value in the absence of the electromagnetic 
field), while X and Y correspond to the imaginary and real 
parts of the atomic coherence, respectively, and 6 is the 
field's instantaneous phase in the rotating frame. We are par- 
ticularly interested in the behavior of Z for comparison with 
the experimental results, and while the analysis is best per- 
formed in the instantaneous frame, the transformation from 
the rotating to the instantaneous frame has no effect on Z. 
Applying the following transformation equations to the ap- 
propriate Bloch vector components, 

XiBa=cos(e)XTOl+sm(0)Yml, (2a) 

Kinsl= - sin( 6)Xrox+ cos( 0) Yrol, (2b) 

results in the three instantaneous frame Bloch-vector equa- 
tions: 

dX 

It' 
(de 

■yX+\— + A\Y-w1Z, 
dt 

dY de 
Tt 

+ A X, 

dZ 

It' 
■y(Z-Z0) + w1X. 

(3a) 

(3b) 

(3c) 



(For ease of notation we have dropped the instantaneous 
frame subscript, it being understood in all the following ex- 
pressions.) Note that the principal simplification of the Bloch 
equations in the instantaneous frame is that the field's phase 
variation now appears directly as a multiplicative factor 
rather than the argument of a transcendental function [7]. 

As in our previous work, the phase variations are written 
as the sum of adiabatic and nonadiabatic components: 

0(0= <W') + e2 fl,sin(2ir/,/+ <fc). (4) 

where dMa(t) corresponds to all phase variations with Fou- 
rier frequencies, f^t, less than the Rabi frequency, and the 
sum is over the Fourier frequencies, /,, in the vicinity of the 
Rabi frequency and higher. The to are random and uniformly 
distributed phases between 0 and 2ir, the parameter e repre- 
sents the mean amplitude of the Fourier components near the 
Rabi frequency, and the a, reflect the specific variations in 
Fourier amplitudes and are associated with the power spec- 
tral density of phase variations. In the present case, the Fou- 
rier frequencies associated with the adiabatic phase varia- 
tions, while less than the Rabi frequency, are greater than the 
atom's intrinsic relaxation rate, y. Consequently, the relative 
magnitudes of the key frequencies and rates in the present 
problem are y<27r/lldi,<ü)1=£27r/1. These relationships re- 
flect the experimental conditions to be discussed subse- 
quently, and allow several simplifications in the following 
analysis. 

For realistic phase fluctuations, the adiabatic phase varia- 
tions typically have larger Fourier amplitudes than the non- 
adiabatic variations. This prompts a perturbation approach to 
the analysis of Eqs. (3) in which the nonadiabatic fluctua- 
tions are treated as a perturbation to the primary response 
induced by the adiabatic phase variations. Each Bloch vector 
component is therefore written in the form 

C(») = C(0,(r) + eC(,)(/), (5) 

where the superscripts on the Bloch-vector components indi- 
cate their order in the perturbation expansion. Inserting Eq. 
(5) and Eq. (4) into Eqs. (3) yields the zeroth- and first-order 
Bloch vector equations of motion. The zeroth-order equa- 
tions take the form 

*£~*»-(3r + A   F(0,-a»,Z<°\      (6a) 

dY(0) 

dt 
= -yK<0>- 

dO, adia 

dt 
+A x<0>. 

dZ (0) 

dt 
■ = -rfZ<0>-Zo) + a»1X<°\ 

(6b) 

(6c) 

while the first-order equations are 

dt 
' = -rx<»+(^+A)y<,,-«,z<,> 

+ y(0)2 litaj, cos(2w/,l+ *,), (7a) 

</y( 
. = _ry<»_ 

de, adia 
+ A X(1> 

dt ''        \   dt 

-X<0)2 2ira/, cos(2*/,7 + to).       (7b) 

dZP_ 

dt 
= -yZ<,>+«lX

(,>. (7c) 

As anticipated, the first-order equations provide insight into 
the behavior of the atomic system at Fourier frequencies near 
to or greater than the Rabi frequency. 

In order to simplify the first-order equations, several ap- 
proximations may be made. First, since the Rabi frequency is 
much greater than the relaxation rate, Eq. (7c) becomes 

dt 
«».X«». (8) 

Differentiation of Eq. (7a), followed by the insertion of Eqs. 
(8) and (7b), then results in a second-order differential equa- 
tion for X(l), 

d7Xw       <fX»>        ,      .    ... 
—3- + r-r-+<A2+wi>*() 

dt1 dt 

= -(r<0>2 27rfl/,cos(27r/,.+ to) 

-X
0,
A2 2ira/,cos(27r/,/+^). (9) 

[In obtaining Eq. (9) we neglected the y term in Eq. (7b), the 
eMz term in the derivative of Eq. (7a), and we assumed that 
VA^+wf^öjdia.] Equation (9) indicates that X(1) responds 
to the PDF like a damped, driven harmonic oscillator, whose 
resonant frequency is the Rabi nutational frequency, Cl 
= x/A2+o>f. Note that when the detuning is set equal to 
zero, the resonant frequency is just the Rabi frequency as 
observed in our previous investigations [2]. Since the driving 
frequencies in Eq. (9) are greater than or equal to the Rabi 
frequency, the X(1) response as a function of Fourier fre- 
quency will have a resonance line shape akin to that of a 
harmonic oscillator. In conjunction with Eq. (8), this conclu- 
sion implies that the atomic population will also display a 
resonant response for Fourier frequencies approximately 
equal to the Rabi nutational frequency. Though some distor- 
tion of the "pure" harmonic-oscillator resonance line shape 
should be expected given the integration implied by Eq. (8), 
qualitatively we expect this to have a small effect, as the 
Rabi-resonance linewidth is much narrower than the Rabi- 
resonance center frequency. 

The strength of the Rabi resonance can be examined 
through the behavior of the zeroth-order Bloch-vector com- 
ponents, as these determine the strength of the "force" ex- 
citing the Rabi resonance. However, Eqs. (6), including the 



equations describing the motion of 0(f) and 0(f). are non- 
linear. To proceed, we therefore augment our perturbation 
expansion with a linearization of the zeroth-order equations 
in the vicinity of their equilibrium point. Within this addi- 
tional, linear approximation we can investigate the dynamics 
of the X(0) and y(0) components, and thereby the strength of 
the force exciting the Rabi resonance. (The linearization pro- 
cedure is described in Ref. [4], and will not be repeated 
here.) The relevant results are the linearized differential 
equations for the zeroth-order Bloch-vector components, and 
their equilibrium values (i.e., Xeq, 1"*», and Z">). 

Since the relaxation rate is much smaller than the Rabi- 
frequency and field-frequency detuning, the equilibrium val- 
ues take on relatively simple forms: 

X*=- 

AtoiZn 

Z«l: 
(A'+y^Zo 

n2 

(10a) 

(10b) 

(10c) 

The linearized zeroth-order differential equations are now 
written in terms of a primed set of variables which have been 
shifted from the unprimed values by the component equilib- 
rium values (eg., X'=X(0)-Xe<i), 

dt at 
(Ha) 

Eq. (12) containing Y"1 is dominant. The temporal behavior 
of X' may therefore be described approximately as 

X' = 
r* d26i 

TF~d? 
adia 

leading to 

v(0)~ AtülZ0 £^fdia_ T0»!2!) 
X     =     773 771 TTi    • o4 

dt1 a2 

(13) 

(14) 

Combining Eq. (13) with Eq. (lib) yields an expression for 
the zeroth-order behavior of Y(t): 

y<°)= 
«UJZQ A20, 

n 
adia . 
I- + yöadia (15) 

Equations (14) and (15) can now be substituted back into 
Eq. (9) to obtain an explicit expression for the force driving 
X(1). However, as the Fourier component at fl will dominate 
the forcing function on the right-hand side of Eq. (9), the 
Bloch-vector behavior can be analyzed semiquantitatively by 
considering just this one Fourier component. Normalizing 
the differential equation so that the forcing function has units 
of X(1), Eq. (9) then becomes 

1   d2X^ + n2""!?-  W dt 
y dX(1) 

T1—r- + Xw=-anZQA sin(nf+<frn) 

with 

A = 
ct^A 

IF 
Aöjdia 

IV 

(16a) 

(16b) 

dY' ,        m dtfadia 
— =-yy'-AX'-X«>- 
dt ' dt 

dZ' 

~dt 
•yZ' + ü),X'. 

(lib) 

(He) 

Differentiation of Eq. (11a) followed by substitution of Eqs. 
(lib) and (lie) results in the following differential equation 
for X' with y small, 

d2X'       dX'       „ dd„&. T+r—+n2x'=AXe"-^ + rK1 d
2e, adia 

dt1 dt dt dt1 

(12) 

Again, we obtain a damped, driven harmonic-oscillator equa- 
tion with the Rabi nutational frequency as the resonance fre- 
quency. However, for this zeroth-order response all Fourier 
components associated with the driving terms on the right- 
hand side of Eq. (12) are well below the resonance fre- 
quency. Consequently, the response of X' to the PDF is like 
a stiff spring, simply proportional to the driving terms. Ad- 
ditionally, the relative magnitudes of all the parameters in 
the problem indicate that the term on the right-hand side of 

(We have again ignored terms of y and O^a-) Since the 
amplitude of the force term on the right-hand side of Eq. 
(16a) determines the magnitude of X(1), conditions that 
maximize this amplitude must also maximize the strength of 
the Rabi resonance as indicated by Eq. (8). The amplitude 
for the force term [i.e., Eq. (16b)] is therefore a measure of 
the Rabi resonance's strength, and this is plotted in Fig. 1 for 

co 
DC -15 -10      -5        0 5 10 

Normalized detuning, A/o^ 

FIG. 1. Theoretical Rabi-resonance strength as a function of 
normalized detuning. 



two different values of 6l&i. Note that the Rabi-resonance 
strength is zero for A = 0, and that it is an asymmetric func- 
tion of detuning with the greater Rabi-resonance strength 
corresponding to (otM<o)uom. The detuning that results in 
the maximum Rabi-resonance strength, A,™,, can be deter- 
mined by finding the extremum of Eq. (16b) as a function of 
detuning, and this is found to occur when |An,„l=ö»i- 

Application of straightforward analytical techniques and 
judicious approximations has resulted in a simple description 
of the two-level atom's response to a nonresonant, phase- 
fluctuating field. The three principal predictions of our theo- 
retical analysis may be briefly summarized as follows: (i) the 
center frequency of the Rabi resonance will equal the Rabi 
nutational frequency; (ii) the Rabi resonance's maximum 
amplitude will occur when the absolute value of the detuning 
equals the Rabi frequency, and (iii) the maximum amplitude 
of the Rabi resonance will be larger with the field tuned 
below resonance than with it tuned to frequencies above 
resonance. In the following section we will describe experi- 
ments that confirm these expectations. 

m. EXPERIMENT 

The experimental arrangement is essentially the same as 
that employed previously [3]. As illustrated in Fig. 2, a reso- 
nance cell containing isotopically pure 87Rb and 10 torr of 
N2 was placed in a microwave cavity whose TEQH mode was 
resonant with the ground-state hyperfine transition of 87Rb at 
6834.7 MHz. Specifically, the microwave field induced tran- 
sitions between the (F=2,mf=0)-(F= l,mF=0) ground- 
state Zeeman sublevels. (This is often referred to as the 0-0 
ground-state hyperfine transition.) The cylindrical cavity had 
a radius of 2.8 cm and a length of 5 cm, and the resonance 
cell filled the cavity volume. The loaded cavity Q was ap- 
proximately 400, though coating of the glass resonance cell 
by a film of alkali metal during the experiments likely re- 
duced this considerably. Braided windings wrapped around 
the cavity heated the resonance cell to —32 °C, and the entire 
assembly was centrally located in a set of three perpendicular 
Helmholtz coil pairs: two pairs zeroed out the Earth's mag- 
netic field while the third pair (~1 G) provided a quantiza- 
tion axis for the atoms parallel to the microwave cavity's 
cylindrical axis. Light from a linearly polarized Al^Ga) -,As 
diode laser (~3 mW) was tuned to the Rb 
5 2Pm-5 2Sm(F=2) transition [8], and was attenuated by 
a 2.7 optical density filter before passing through the reso- 
nance cell. The propagation direction of the laser was along 
the cavity axis; it entered the cavity through a 1.14-cm-diam 
port, and its transmission through the vapor was monitored 
with a Si photodiode. 

In the absence of resonant microwaves, optical pumping 
reduced the density of atoms in the absorbing state [i.e., 
5 2Sin(F=2)], and consequently increased the amount of 
light transmitted through the vapor. However, when the mi- 
crowave field in the cavity was resonant with the 87Rb 0-0 
hyperfine transition, atoms returned to the 5 2Sm(F=2) 
state from the 52S1/2(F=1)  state, thereby reducing the 
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FIG. 2. Optical-pumping/magnetic-resonance experimental ar- 
rangement as described in the text. The VCXO had a bandwidth of 
approximately 10 kHz and a transfer function of -794 Hz/V. The 
bandwidth of the spectrum analyzer was 25 kHz. 

amount of transmitted light. Since the degree of optical 
pumping was relatively low, microwave-induced changes in 
the atomic population distribution were proportional to 
changes in the transmitted laser light. Consequently, the 
transmitted laser light was a measure of the atomic popula- 
tion's response to the fluctuating microwave field. Moreover, 
due to the spatial distribution of optical pumping efficiency 
within the resonance cell, most of the atomic signal was 
derived from the central portions of the cavity where the 
microwave magnetic-field strength (and hence the Rabi fre- 
quency) was relatively constant [9]. 

The microwaves were derived from a voltage-controlled- 
crystal oscillator (VCXO) which had a modulation band- 
width of 10 kHz [10], and the frequency of its output at 
-107 MHz was multiplied up to 6.8 GHz before being am- 
plified by a 30 dB solid-state amplifier. The microwave 
power entering the cavity could be controlled with variable 
attenuators (labeled as -dB in Fig. 2), and these were cali- 
brated to microwave Rabi frequency by measuring the line- 
width of the hyperfine transition in the absence of noise [11]. 
Extrapolating the linewidth measurements to zero micro- 
wave power indicated that the intrinsic dephasing rate in our 
system, y2, was approximately 40 Hz. The white-noise out- 
put from a commercial synthesized function generator with a 
15 MHz bandwidth was added to a dc voltage in order to 
provide the VCXO's control voltage, Vc. The dc level of Vc 

fixed the detuning between the average microwave frequency 
and the 0-0 hyperfine resonance, and the noise generator pro- 
vided stochastic phase fluctuations. In contrast to our previ- 
ous studies [3], there was no "extra" adiabatic phase varia- 
tion added to the control voltage. The only adiabatic phase 
variation was that arising from the broadband nature of the 
stochastic phase fluctuations. 

The noise signal and dc voltage were summed in a pre- 
amplifier with an adjustable bandwidth. The high-frequency 
roll-off of the preamplifier, at 6 dB/octave, was set at 1 MHz, 
so that the VCXO was the bandwidth-limiting element in the 



microwave chain and hence determined the spectral cutoff of 
the microwave field's frequency fluctuations. Consequently, 
the frequency fluctuations associated with the microwave 
field were white out to about 10 kHz [12]. The amplitude of 
the noise voltage could be adjusted in order to vary the stan- 
dard deviation of the phase variations. However, for the 
present experiments this noise voltage was kept at a fixed 
value, so that the standard deviation of microwave frequency 
fluctuations was 250 Hz. 

IV. RESULTS 

The basic experimental procedure amounted to fixing a 
value for the Rabi frequency and detuning, and then measur- 
ing the Fourier spectrum of population variations (as moni- 
tored by the transmitted light intensity) on a spectrum ana- 
lyzer. Figure 3 shows a typical set of Rabi resonances 
obtained in our experiment for the case to [ = 950 Hz, and 
clearly demonstrates a change in the Rabi resonance's 
strength and center frequency with detuning. A more quan- 
titative assessment of the Rabi-resonance condition's depen- 
dence on detuning is shown in Fig. 4, where the Rabi- 
resonance center frequency is plotted as a function of Rabi 
nutational frequency. Note that the relationship is linear, as 
predicted theoretically, and that this linearity is maintained 
for more than two orders of magnitude. 

The change in strength of the Rabi resonance as a func- 
tion of detuning is illustrated in Fig. 5, where (a) corresponds 
to o)! = 950 Hz and (b) corresponds to iO! = 3780 Hz. The 
solid line in the figure is simply an aid to guide the eye, as 
Eq. (16b) is only valid in a semiquantitative sense. However, 
as predicted theoretically, the Rabi-resonance strength does 
drop dramatically for A = 0, and it is an asymmetric function 
of detuning with larger Rabi-resonance strengths correspond- 
ing to wfieid<watonl. Similar behavior was observed for all 
Rabi frequencies examined in our study. 

In order to estimate the magnitude of detuning that maxi- 
mized the Rabi-resonance strength, we used curves like those 
shown in Fig. 5 and measured the separation between peaks, 
Apeak ■ Half of this spacing may be taken as the detuning that 
maximizes the Rabi resonance, and this is shown in Fig. 6 as 
a function of Rabi frequency. The solid line corresponds to 
the theoretical prediction of | A „,„1=<■>], and is verified by 
the measurements for more than an order of magnitude 
change in the Rabi frequency. 

V. SUMMARY 

In the investigation discussed here, we have theoretically 
and experimentally expanded on our previous studies by in- 
vestigating Rabi resonances excited by oil-resonant stochas- 
tic fields. Our experiments are in very good agreement with 
theoretical expectations. Specifically we have found that (i) 
Rabi resonances occur at the Rabi nutational frequency, fl 
= VA2+o»f; (ii) the strength of a Rabi resonance is maxi- 
mized when the field-atom detuning equals wj; and (iii) the 
strength of a Rabi resonance is an asymmetric function of 
detuning. 
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FIG. 3. Several examples of Rabi resonances as observed on the 
spectrum analyzer for different values of the field detuning. The 
Rabi frequency for this particular experiment was 950 Hz. For the 
purposes of this plot, negative detunings were taken to imply nega- 
tive Fourier frequencies. 
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FIG. 4. Resonant frequency of the Rabi resonance versus the 
Rabi nutational frequency; differing symbols correspond to differ- 
ent values of the Rabi frequency, a){: for gray diamonds to, 
= 7540 Hz, for white circles &>i = 3780Hz, for gray triangles w1 

= 1890 Hz, for white diamonds tui = 950Hz, for black circles «u, 
= 475 Hz, for white triangles to, = 170 Hz, and for gray squares 
cu, = 85 Hz. Since the amplitude of the Rabi resonance depends on 
the relationship between |A| and o>], different combinations of |A| 
and cU] were required to generate Rabi resonances with good signal- 
to-noise characteristics. 

Though interesting in its own right, the Rabi-resonance 
phenomenon has application for the atomic stabilization of 
electromagnetic field amplitude [13]. Specifically, by phase 
modulating a resonant field in the manner of Cappeller and 
Mueller (CM) [5], it is possible to lock the Rabi frequency 
(and hence field strength) to the phase-modulation fre- 
quency. Since the phase-modulation frequency can be de- 
rived from an ultrastable oscillator (e.g., an atomic clock), 
the resulting stabilized field can exhibit extremely low inten- 
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sity noise, and moreover may be precisely tuned by varying 
the phase-modulation frequency. With this application in 
mind (and to the extent that the CM manifestation of the 
Rabi-resonance phenomenon displays similar characteristics 
to ours), the present experiments show that fluctuations in 
the field frequency will give rise to fluctuations in the Rabi- 
resonance condition. In a field-strength feedback control 
loop these fluctuations in the Rabi-resonance condition 
would give rise to field strength instability. However, as the 
present work demonstrates, the Rabi-resonance condition is 
defined by the Rabi nutational frequency, and for small de- 
tunings nscü,[l + (A2/2ü)?)]. Consequently, field fre- 
quency fluctuations would only affect field-strength stabili- 
zation using Rabi resonances in a second-order fashion. 
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FIG. 5. Amplitude of the Rabi resonance as a function of mi- 
crowave field detuning for (a) <u, = 950 Hz and (b) wx = 3780 Hz. 
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FIG. 6. Defining the separation between extrema in curves like 
that of Fig. 5 as A^^, this graph plots b^JI vs to,. Basically, 
ApMit/2 is a measure of the detuning magnitude that maximizes the 
strength of the Rabi resonance. 
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TECHNOLOGY OPERATIONS 

The Aerospace Corporation functions as an "architect-engineer" for national security programs, spe- 
cializing in advanced military space systems. The Corporation's Technology Operations supports the 
effective and timely development and operation of national security systems through scientific research 
and the application of advanced technology. Vital to the success of the Corporation is the technical 
staffs wide-ranging expertise and its ability to stay abreast of new technological developments and 
program support issues associated with rapidly evolving space systems. Contributing capabilities are 
provided by these individual Technology Centers: 

Electronics Technology Center: Microelectronics, VLSI reliability, failure analysis, 
solid-state device physics, compound semiconductors, radiation effects, infrared and 
CCD detector devices, Micro-Electro-Mechanical Systems (MEMS), and data storage 
and display technologies; lasers and electro-optics, solid state laser design, micro-optics, 
optical communications, and fiber optic sensors; atomic frequency standards, applied 
laser spectroscopy, laser chemistry, atmospheric propagation and beam control, 
LIDAR/LADAR remote sensing; solar cell and array testing and evaluation, battery 
electrochemistry, battery testing and evaluation. 

Mechanics and Materials Technology Center: Evaluation and characterization of new 
materials: metals, alloys, ceramics, polymers and composites; development and analysis 
of advanced materials processing and deposition techniques; nondestructive evaluation, 
component failure analysis and reliability; fracture mechanics and stress corrosion; analy- 
sis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle 
fluid mechanics, heat transfer and flight dynamics; aerothermodynamics; chemical and 
electric propulsion; environmental chemistry; combustion processes; spacecraft structural 
mechanics, space environment effects on materials, hardening and vulnerability assess- 
ment; contamination, thermal and structural control; lubrication and surface phenomena; 
microengineering technology and microinstrument development. 

Space and Environment Technology Center: Magnetospheric, auroral and cosmic ray 
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and 
ionospheric physics, density and composition of the upper atmosphere, remote sensing, 
hyperspectral imagery; solar physics, infrared astronomy, infrared signature analysis; 
effects of solar activity, magnetic storms and nuclear explosions on the earth's atmos- 
phere, ionosphere and magnetosphere; effects of electromagnetic and paniculate radia- 
tions on space systems; component testing, space instrumentation; environmental moni- 
toring, trace detection; atmospheric chemical reactions, atmospheric optics, light scatter- 
ing, state-specific chemical reactions and radiative signatures of missile plumes, and 
sensor out-of-field-of-view rejection. 


